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Abstract: Tlrc pure R-f+J-ena.ntiomer of S-lipoxygenasc inhibitor zilcvron was prrpored by diastereoselectiw 
methyl Grignard a&ii&n to an akionitwne bearing a D-gui~j%ranosederived chiral auxiliary. A&&ion of the Lewis acid 
trinle~lalumillwn leads to a reversal of tht &ykation stereochem&ry olus tht potent pyti analogtu, R-(+)-R&27871 
was prepared in this way&m an L-guk@ranose&rived nihme. 

Zileuton 1 is a racemic N-( 1-arylethyl)-N-hydroxyurea inhibitor of mammalian 5lipoxygenase U-LO) 

which is currently in clinical development by Abbott Laboratories as a tteatment for asthma.2 The Syntex 

compound, RS-2787 1,2 is an optically active pyrido analogue. bearing the R-(+)-configuration. which shows 

higher potency and significantly longer metabolic half-life in vitro.3 Several routes to racemic 1 have been 

described in the literature but only one enantioselective synthesis has appeared, a lengthy chirai pool approach 

starting from L-lactic acid.% The lack of general enantioselective methodology for this class of compounds has 

been noted.% 

Schwartz and Hu have recently disclosed a novel synthesis of chiral benzylic amines and 

hydroxylamines based upon Grignard alkylation of nitrones bearing a 2.35,~di-O-isopropylidene-gulofuranose 

auxiliary.4 A particular advantage of the sugar gulose is that both of its enantiomers are readily prepared, and 

commercially available, in the form of the gulono-l+lactones. Related precedents wefe found in the 

preparation and diastereoselective cycloaddition reactions of sugar-derived Qdonitrones which have been 

extensively studied by Vasella.s In addition, the utility of chelation-controlled stereoselective Grignard additions 

to amino alcohol-derived &ones has been amply demonstrated by ~oates.6 

The synthesis of enatiomerically pure R-(+)_Zileuton was readily accomplished using the gulose 

auxiliary (Scheme 1). D-Gulono-Wlactone7 3 was protected as its diisopropylidene derivative (acetone, 2,2- 

dimethoxypropane, TsOH),g reduced to the lactol (D&al, tol, -7PC)9 and converted to a glassy 65 mixture of 

aldoximes 4 (hydroxylamine*HCl, sodium bicarbonate, aq. MeOH) in 42% overall yield. Thianaphthene Sa 

was formylated (1.4 eq. n-BuLi, THF, -78°C; 4 eq. DMF)tO to give aldehyde 6a in 82% yield and this was 
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condensed with equimolar 4 in refluxing toluene under Dean-Stark conditions to afford the highly crystalline 

nitrone 7~111 in 78% yield. The &configuration of the anomeric center was assigned based on observation of 

5r-z -0 Hz in the rH-NMRsb and the Znitrone stereochemistty was supported by observation of a strong NOE 

between the benzylic and Cl’ hydrogens. 

Treatment of a slurry of the nitrone 7a with methylmagnesium bromide at 0°C (1.5 eq. ethereal 

MeMgBr, CH2Cl2, 1 h) gave a clear solution from which the sole monoalkylation product, Sal2 (99% de), 

was isolated in 6 1% yield following silica gel chromatography. Acid cleavage of %a ( 1 N HCl, MeOH, O”C, 

12h) afforded the hydroxylamine !&t which was carbamoylated (TMSNCO, THP, 23OC) without purification to 

give R-(+)-l in 72% yield, gf,r crystallization from CH2C12/MeOH/hexane.l3 
Preparation of optically pure RS-2787 1 2 was initially found to be more difficult. Thieno[2,3-b]- 

pyridine Sb14 was formylated15 and condensed with 4, as above, to give n&one 7b16 in 80% yield. Alkylation 

at OOC with MeMgBr in CH92 gave a 64% yield of a mixture of monoalkylation products, with a disappointing 

30% de favoring the desired R-epimer 8b. The lower diastereoselectivity in this case presumably resulted from 

perturbation of the structured magnesium &elate by the pyrido ligand. At -78°C no reaction occurred (20 

MeMgBr, 4Oh, CH2Cl2 or THF) due to the insolubility of 7b (or 7a) at low temperature. 
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Alternative organometallic reagents were screened in an attempt to raise the diastemoselectivity and this 

led to a serendipitous discovery. Addition of trimethylaluminum (1.2 eq 1M in hexane) to a CHzCl2 slurry of 

7b gave no alkylation but instead formed a stable, soluble complex. The complex remained fully dissolved even 

on cooling to -78T and Grignard addition at that temperature (1.5 eq ethereal MeMgEtr, 0.5 h) unexpectedly 

afforded, aa the major product, the S-epimer 1017 (63% yield, 82% de) revealing a rm 
. . 

echvzt?, from the. 18 Repetition of the sequence starting from L-gulono- 1,4- 

lactone ent-3,19 using aluminum-mediated Grignard addition, afforded the desired R-epimer, ent-IO, in 

similar overall yield and de. Acid cleavage of ent-10 gave 9b, which upon carbamoylation afforded pure 220 

in 40% yield, after removal of a small amount of racemic material by crystallization. 
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Comparison with two closely related sugar auxiliaries implicated gulose’s CS-oxy substituent as a key 

stereocontrol element, despite its distance from the reaction center. Commercially available 2,3:5,6-di-0- 
isopropylidene-a-D-mannofuranose was readily converted into its oximes and condensed with aldehyde Sb 

(toluene, 1 lOT, 40 h) to give nitrone ll*l in 65% yield. In similar fashion, L-erythronic llactone was 

converted into nitrone 12.22 Despite the obvious structural homologies of 11 and 12 with 7b (or more 

specifically with ent-7b), methyl Grignard addition to these former nitrones, either with or without 

trimethylaluminum, proceeded with poor diasteteoselectivity. Thus, Schwartz’s identification of the 

gulofuranose auxiliary appears to be a key observation, with the trimethylaluminum-mediated reaction being a 

useful complement to the basic method in some cases.~ 

Ackhowledgment: The authors thank Mr. Doug Wren for the preparation of 5b and Mr. David Repke for 
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KibayasIki, c. J. Anr cwn. sue. 1986, rus, 46w4tw‘ 
Shinsly, D. H.; Danzig, M. J. J. Ant. Chetna Sex. X952.74. 29356. 
(7r): mp 244-6*C bails; IaID -14’ (c 1.1, CH2CIz); IR (KBr), 1563 an-I; FAB MS, m& 420 &fH+), 243,285, 

127: lH NMR (wiw113,300 MHz) 6 8.14 (s, 1 H, N&H), 7.92-7.80 (m. 2 H, ArH), 7.76 (s, lH, Ar3ff), 7.46-7.38 (m, 2 
H, ArH), 5.65 <s. 1 H, Cl’H), 5.37 (d. I = 6.1 Hz, 1 H, Cz’H). 4.94 (dd, J ii: 4.3,6-l Hz, 1 H, C3’H), 4.65 (dd, J= 4.3, 
8.lH~lH,~H),4.39(~~=4.6,?.3,8.1,1 H,Cg’H),425(ddf=6.6,8.5tiz,C6’H),3.73(dd,J=7.3,8.5Hz, 
C&B’), 1.52 (s, 3 H, Me), 1.46 (a, 3 H, Me), 1.41 @, 3 H, Me), 1.34 (s. 3 H, Me). An& C&xi for C21H~NOgS: C, 
60.13; H. 6.01; N, 3.34. Found: C, 60.64; H, 5.76; N, 3.51. 
(Sa): mp 87Qc (foam); [a&j +38” (c 0.6, CHzCI2); IR WW. 3440 cm-l; MS mh 435 W+‘), 377,319,161; IH NMR 
CCDCl3.300 MHz) S 7.80-7.68 (m, 2 H, Arli), 7.35-7.25 &k, 2 H, ArH), 7.a (s, 1 H, C3H), 5.12 (s. 1 H, OH), 4.98 (6 
~=6.1Hz,1H,C~H),4.74{d~J=4,2,6.1Hz,lH,C3’H),4.73(s,lH,CI~H,).4.70(q,J=6.6Hz,1H,~~, 
4.36-4.18 (m, 3 H, c4y@‘), 3.68 (dd, J = 6.5,8,2 Hz, 1 H, Cg’H’). 1.50 (d, J = 6.6 Hz, 3 H, NCBIe}, 1.49 (s, 3 H, Me), 
1.48 (s, 3 H. Me), 1.41 (s, 3 H, Me). 1.32 (s, 3 H, Me). Anti. C&xi for C22H2gNOgS: C, 60.67; H, 6.71; N, 3.22. 
Found: C, 60.72; H, 6.56; N, 3.33. 
~~)-{+)-1): mp 155-7*C {CH2Cl2~~~e~)~ {ab +46.8” (c 0.349, MeOH), (tit.% tarr> +50.3” (c 0.35, MeOH)]; 

IR (KBr), 3459,3276,1676 cm-I; IH NMR (5% I3MSO-&/CDCI3, 300 MHz) S 8.83 (s, 1 H, OH). 7.78-7.69 (m, 2 H, 
ArH), 7.33-7.24 (m, 3 H, ArH), 5.77 (q, J = 6.9 Hz, 1 H. A&H), 5.50 &s, 2 H, NH&, 1.65 (d, J = 6.9 Hz, 3 H, Me). 
Anal. C&d for CllHI2N2q2S: C, 55.91; H, 5.12; N, 11.86. Found: C, 56.05; H, 5.10; N, 11.73. Chit& put&y of 
299.6% ee was verified by HPLC upon comparison with a racems ‘c mferxuce semplGb @XimlceI OD-R, 4.6 mm x 25 an, 
35”C, 75% 0.5 M NaCIG4/25% CH3CN, h = 234 urn, flow lag.). 
I&mm. L. H.; IClopfenstein, C. E.; Z&l, R,; McCoy, D. R.; Klemm, R. A, J. Org. C~JA?~. 1%9,34, 347-54. 
Merrill, R. E.; Klemm, L. H. J. Heterocyclic Chem. 1974, II, 355-361. 
17b): mp 254-5°C basal); iah -12.S9 (c 1, CH$&): IR (KBr), 1552 cm-I; l&l NMR @MS@&, 300 MHz) S 
8.79 (s, 1 H. N=CHh 8.64 (dd, J= 1.6,4.6 Hz. 1 H, C&i), 8.30 (dd, J = 1.6, 8.2 Hz, 1 H, C&f), 7.95 (s, 1 H, C3W), 
7.46 (dd, J = 4.6,8.2 Hz, I H, CgH), 5.94 (s, 1 H, CI’H), 5.17 (d, J = 6.0 Hz. 1 H, @H), 5.02 (dd, J = 4.4 6.0 Hz, 1 H. 
CyH), 4.61 (dd, J= 4.28.2 Hz, 1 H. C&W, 4.19-3.79 (m, 3 Ii, Cgn,6H), 1.46 (s, 3 H, Me), 1.36 (s. 3 H, Me), 1.30 (s, 
6 H, 2 x Me). AnaI. C&d for C~H~N206S: C, 57.13; H, 5.75; N, 6.66. Found: C, 57.27; H, 5.68: N, 6.66. 

(10&b, 91:9 crysuruine mixtut&: mp 161-2Y! ~~OA~x); (a&llO” (c 1, CH2Ci.z); IR WBr), 3430 cm-l; MS nt/z 

436 &i**}, 378, 162, Anal. C&d for C2IHaN20&: C, 57.78; H, 6.W; N, 6.42. Found: C, 57.92; H, 6.47; N, 6.55. 

(18): lH NMR (CDCl3, 300 MHz) S 8.47 (dd,.! = 1.4,4.7 Hz, 1 H, C6H), 7.94 (dd, .t = 1.4,8.0 Hz. 1 H, CqH), 7.24 Wd, 
J = 4.7,8.0 Hz, 1 H. Csw), 7.21 (st 1 H, C3H), 6.26 (bs, 1 H, OH), 4.97 @I, J= 6.1 Hz, 1 H, @H), 4.84 (s, 1 H, 
CI’W).4.78fdd,J=4.5,6.1Hz,1H,C3~N).4.71(q.J~6.5H~1 H,~~,4.38(ddJ=4~5,8.1Hz,~H),4,3~ 
4.17 fm, 2 H, C&tH), 3.70 fdd, J = 64 8.0 Hz. Cgifi), 1.64 (d., J 3: 6.5 Hz, 3 H, NCMe), 1.48 (s, 3 H, Me}, 1.41 (s, 3 
H, Me), 1.38 (s, 3 H, M& 1.25 (a 3 H, Me). 
Methvl Ghmard addition to 7s in the presence of trimethylalumioum gave &I in 20% de. 
H”~~~~e~, C. Syntiths 1986,962-4, ref. 6. 
(2); mp 158-6O”C ~~~~Ac~ [ab +41” (c 0.2, MeOH’); IR KBr), 3475,3150,1693 cm-l; *H NMR @NsO-& 
300 MHz) 6 9.32 {s, 1 H, OH), 8.49 (dd, J = 1.6.4.7 Hz, 1 H, &Ii), 8.16 (dd, J = 1.6.8.0 Hz, 1 H. C&H), 7.38 (dd, J = 
4.7.8.0 Hz, 1 H, CsH), 7.26 (d, J = 0.9 Hz, 1 H, C3H), 6.52 (bs, 2 H, NHZ). 5.58 (dq, J = 0.9,7,0 Hz, 1 H, AtCHN), 
1.52 (d. J E 7.0 Hz, 3 H, Me). Anal. Cakd for ClOHllN3G2S: C, 50.61; H, 4.67; N, 17.70. Fouwk C, 50.64; H, 4.68; 
N, 17.74. C&-al purity of %% ee wzw any by HPLC (Cbiml AGP, 4 mm x 10 cm, 23°C. 92% 10 m&l KH2PW 
8 % MeGH, h = 234 x1111, flow 1 mUmin.). 
(11): mp 248.51V (EtGA&oI); [a&) + S8* (c 1, CH2CI2); IR (ICBr), 1553 unwl. Anal. C&d for C2(jH24N206S: C, 
57.13; H, 5.75: N, 6.66. Fixma C, 56.69; H, 5.63; N, 6.61. 
(12): mp 210-3°C (EtGAchol); [a]D + 14S* (c 0.6, CH2Cl2); IR (K&h 1552 cm”*, Anal. calcd f~Cl~Hl~204S: C, 
56.W; H, 5.03; N, 8.74. Found: C, 56.34; H, 5.18; N, 8.96. 
~e~~afLewisAcid-mectiated~afItitrone~fsciel~~ui~Yve~dybeenrepcwted; 
Dondini, A.; E%amw, S.; Medan, F. L.; Merino, P.; Tkjem, T. T~tr~d~n Mt. 1993,34, 54754478, 5479-82. 
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